Increasing pattern recognition accuracy for chemical sensing by evolutionary based drift compensation
نویسندگان
چکیده
Artificial olfaction systems, which mimic human olfaction by using arrays of gas chemical sensors combined with pattern recognition methods, represent a potentially low-cost tool in many areas of industry such as perfumery, food and drink production, clinical diagnosis, health and safety, environmental monitoring and process control. However, successful applications of these systems are still largely limited to specialized laboratories. Sensor drift, i.e., the lack of a sensor’s stability over time, still limits real industrial setups. This paper presents and discusses an evolutionary based adaptive drift-correction method designed to work with state-of-the-art classification systems. The proposed approach exploits a cutting-edge evolutionary strategy to iteratively tweak the coefficients of a linear transformation which can transparently correct raw sensors’ measures thus mitigating the negative effects of the drift. The method learns the optimal correction strategy without the use of models or other hypotheses on the behavior of the physical chemical sensors.
منابع مشابه
Chemical gas sensor array dataset
To address drift in chemical sensing, an extensive dataset was collected over a period of three years. An array of 16 metal-oxide gas sensors was exposed to six different volatile organic compounds at different concentration levels under tightly-controlled operating conditions. Moreover, the generated dataset is suitable to tackle a variety of challenges in chemical sensing such as sensor drift...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملDrift compensation of gas sensor array data by Orthogonal Signal Correction
Drift is an important issue that impairs the reliability of gas sensing systems. Sensor aging, memory effects and environmental disturbances produce shifts in sensor responses that make initial statistical models for gas or odor recognition useless after a relatively short period (typically few weeks). Frequent recalibrations are needed to preserve system accuracy. However, when recalibrations ...
متن کاملHigher-order chemical sensing.
6.2. Orthogonality versus Independence 584 6.3. Cross-sensitivity and Diversity 585 6.4. Multiple Roles of Redundancy 585 7. Data Preprocessing 586 7.1. Baseline Correction 586 7.2. Scaling 587 7.2.1. Global Techniques 588 7.2.2. Local Techniques 588 7.2.3. Nonlinear Transforms 588 8. Drift Compensation 588 8.1. Univariate Drift Compensation 589 8.2. Multivariate Drift Compensation 589 9. Featu...
متن کاملSupervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition Letters
دوره 32 شماره
صفحات -
تاریخ انتشار 2011